48 research outputs found

    A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing

    Get PDF
    AbstractNear-surface water vapor and precipitation are central hydrometeorological observables which are still difficult to quantify accurately above the point scale. Both play an important role in modeling and remote sensing of the hydrologic cycle. We present details on the development of a new microwave transmission experiment that is capable of providing line integrated estimates of both humidity and precipitation near the surface. The system is located at a hydrometeorological test site (TERENO-prealpine) in Southern Germany. Path length is kept short at 660m to minimize the likelihood of different precipitation types and intensities along the path. It uses a monostatic configuration with a combined transmitter/receiver unit and a 70cm trihedral reflector. The transmitter/receiver unit simultaneously operates at 22.235GHz and 34.8GHz with a pulse repetition rate of 25kHz and alternating horizontal and vertical polarization, which enable the analysis of the impact of the changing drop size distribution on the rain rate retrieval. Due to the coherence and the high phase stability of the system, it allows for a sensitive observation of the propagation phase delay. Thereof, time series of line integrated refractivity can be determined. This proxy is then post-processed to absolute humidity and compared to station observations. We present the design of the system and show an analysis of selected periods for both, precipitation and humidity observations. The theoretically expected dependence of attenuation and differential attenuation on the DSD was reproduced with experimental data. A decreased performance was observed when using a fixed A–R power law. Humidity data derived from the phase delay measurement showed good agreement with in situ measurements

    Rain event detection in commercial microwave link attenuation data using convolutional neural networks

    Get PDF
    Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique developed to supplement weather radar and rain gauge observations. It is exploiting the relation between the attenuation of CML signal levels and the integrated rain rate along a CML path. The opportunistic nature of this method requires a sophisticated data processing using robust methods. In this study we focus on the processing step of rain event detection in the signal level time series of the CMLs, which we treat as a binary classification problem. This processing step is particularly challenging, because even when there is no rain, the signal level can show large fluctuations similar to that during rainy periods. False classifications can have a high impact on falsely estimated rainfall amounts. We analyze the performance of a convolutional neural network (CNN), which is trained to detect rainfall-specific attenuation patterns in CML signal levels, using data from 3904 CMLs in Germany. The CNN consists of a feature extraction and a classification part with, in total, 20 layers of neurons and 1.4×105 trainable parameters. With a structure inspired by the visual cortex of mammals, CNNs use local connections of neurons to recognize patterns independent of their location in the time series. We test the CNN\u27s ability to recognize attenuation patterns from CMLs and time periods outside the training data. Our CNN is trained on 4 months of data from 800 randomly selected CMLs and validated on 2 different months of data, once for all CMLs and once for the 3104 CMLs not included in the training. No CMLs are excluded from the analysis. As a reference data set, we use the gauge-adjusted radar product RADOLAN-RW provided by the German meteorological service (DWD). The model predictions and the reference data are compared on an hourly basis. Model performance is compared to a state-of-the-art reference method, which uses the rolling standard deviation of the CML signal level time series as a detection criteria. Our results show that within the analyzed period of April to September 2018, the CNN generalizes well to the validation CMLs and time periods. A receiver operating characteristic (ROC) analysis shows that the CNN is outperforming the reference method, detecting on average 76 % of all rainy and 97 % of all nonrainy periods. From all periods with a reference rain rate larger than 0.6 mm h−1, more than 90 % was detected. We also show that the improved event detection leads to a significant reduction of falsely estimated rainfall by up to 51 %. At the same time, the quality of the correctly estimated rainfall is kept at the same level in regards to the Pearson correlation with the radar rainfall. In conclusion, we find that CNNs are a robust and promising tool to detect rainfall-induced attenuation patterns in CML signal levels from a large CML data set covering all of Germany

    Rain event detection in commercial microwave link attenuation data using convolutional neural networks

    Get PDF
    Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique developed to supplement weather radar and rain gauge observations. It is exploiting the relation between the attenuation of CML signal levels and the integrated rain rate along a CML path. The opportunistic nature of this method requires a sophisticated data processing using robust methods. In this study we focus on the processing step of rain event detection in the signal level time series of the CMLs, which we treat as a binary classification problem. This processing step is particularly challenging, because even when there is no rain, the signal level can show large fluctuations similar to that during rainy periods. False classifications can have a high impact on falsely estimated rainfall amounts. We analyze the performance of a convolutional neural network (CNN), which is trained to detect rainfall-specific attenuation patterns in CML signal levels, using data from 3904 CMLs in Germany. The CNN consists of a feature extraction and a classification part with, in total, 20 layers of neurons and 1.4×105 trainable parameters. With a structure inspired by the visual cortex of mammals, CNNs use local connections of neurons to recognize patterns independent of their location in the time series. We test the CNN's ability to recognize attenuation patterns from CMLs and time periods outside the training data. Our CNN is trained on 4 months of data from 800 randomly selected CMLs and validated on 2 different months of data, once for all CMLs and once for the 3104 CMLs not included in the training. No CMLs are excluded from the analysis. As a reference data set, we use the gauge-adjusted radar product RADOLAN-RW provided by the German meteorological service (DWD). The model predictions and the reference data are compared on an hourly basis. Model performance is compared to a state-of-the-art reference method, which uses the rolling standard deviation of the CML signal level time series as a detection criteria. Our results show that within the analyzed period of April to September 2018, the CNN generalizes well to the validation CMLs and time periods. A receiver operating characteristic (ROC) analysis shows that the CNN is outperforming the reference method, detecting on average 76 % of all rainy and 97 % of all nonrainy periods. From all periods with a reference rain rate larger than 0.6 mm h−1, more than 90 % was detected. We also show that the improved event detection leads to a significant reduction of falsely estimated rainfall by up to 51 %. At the same time, the quality of the correctly estimated rainfall is kept at the same level in regards to the Pearson correlation with the radar rainfall. In conclusion, we find that CNNs are a robust and promising tool to detect rainfall-induced attenuation patterns in CML signal levels from a large CML data set covering all of Germany

    Challenges in Diurnal Humidity Analysis from Cellular Microwave Links (CML) over Germany

    Get PDF
    Near-surface humidity is a crucial variable in many atmospheric processes, mostly related to the development of clouds and rain. The humidity at the height of a few tens of meters above ground level is highly influenced by surface characteristics. Measuring the near-surface humidity at high resolution, where most of the humidity’s sinks and sources are found, is a challenging task using classical tools. A novel approach for measuring the humidity is based on commercial microwave links (CML), which provide a large part of the cellular networks backhaul. This study focuses on employing humidity measurements with high spatio–temporal resolution in Germany. One major goal is to assess the errors and the environmental influence by comparing the CML-derived humidity to in-situ humidity measurements at weather stations and reanalysis (COSMO-Rea6) products. The method of retrieving humidity from the CML has been improved as compared to previous studies due to the use of new data at high temporal resolution. The results show a similar correlation on average and generally good agreement between both the CML retrievals and the reanalysis, and 32 weather stations near Siegen, West Germany (CML—0.84, Rea6—0.85). Higher correlations are observed for CML-derived humidity during the daytime (0.85), especially between 9–17 LT (0.87) and a maximum at 12 LT (0.90). During the night, the correlations are lower on average (0.81), with a minimum at 3 LT (0.74). These results are discussed with attention to the diurnal boundary layer (BL) height variation which has a strong effect on the BL humidity temporal profile. Further metrics including root mean square errors, mean values and standard deviations, were also calculated

    Transboundary Rainfall Estimation Using Commercial Microwave Links

    Get PDF
    Unlike actual rainfall, the spatial extent of rainfall maps is often determined by administrative and political boundaries. Similarly, data from commercial microwave links (CMLs) is usually acquired on a national basis and exchange among countries is limited. Up to now, this has prohibited the generation of transboundary CML-based rainfall maps despite the great extension of networks across the world. We present CML based transboundary rainfall maps for the first time, using independent CML data sets from Germany and the Czech Republic. We show that straightforward algorithms used for quality control strongly reduce anomalies in the results. We find that, after quality control, CML-based rainfall maps can be generated via joint and consistent processing, and that these maps allow to seamlessly visualize rainfall events traversing the German-Czech border. This demonstrates that quality control represents a crucial step for large-scale (e.g., continental) CML-based rainfall estimation

    spateGAN: spatio‐temporal downscaling of rainfall fields using a cGAN approach

    Get PDF
    Climate models face limitations in their ability to accurately represent highly variable atmospheric phenomena. To resolve fine-scale physical processes, allowing for local impact assessments, downscaling techniques are essential. We propose spateGAN, a novel approach for spatio-temporal downscaling of precipitation data using conditional generative adversarial networks. Our method is based on a video super-resolution approach and trained on 10 years of country-wide radar observations for Germany. It simultaneously increases the spatial and temporal resolution of coarsened precipitation observations from 32 to 2 km and from 1 hr to 10 min. Our experiments indicate that the ensembles of generated temporally consistent rainfall fields are in high agreement with the observational data. Spatial structures with plausible advection were accurately generated. Compared to trilinear interpolation and a classical convolutional neural network, the generative model reconstructs the resolution-dependent extreme value distribution with high skill. It showed a high fractions skill score of 0.6 (spatio-temporal scale: 32 km and 1 hr) for rainfall intensities over 15 mm h−1 and a low relative bias of 3.35%. A power spectrum analysis confirmed that the probabilistic downscaling ability of our model further increased its skill. We observed that neural network predictions may be interspersed by recurrent structures not related to rainfall climatology, which should be a known issue for future studies. We were able to mitigate them by using an appropriate model architecture and model selection process. Our findings suggest that spateGAN offers the potential to complement and further advance the development of climate model downscaling techniques, due to its performance and computational efficiency

    Transboundary rainfall estimation using commercial microwave links

    Get PDF
    Unlike actual rainfall, the spatial extent of rainfall maps is often determined by administrative and political boundaries. Similarly, data from commercial microwave links (CMLs) is usually acquired on a national basis and exchange among countries is limited. Up to now, this has prohibited the generation of transboundary CML-based rainfall maps despite the great extension of networks across the world. We present CML based transboundary rainfall maps for the first time, using independent CML data sets from Germany and the Czech Republic. We show that straightforward algorithms used for quality control strongly reduce anomalies in the results. We find that, after quality control, CML-based rainfall maps can be generated via joint and consistent processing, and that these maps allow to seamlessly visualize rainfall events traversing the German-Czech border. This demonstrates that quality control represents a crucial step for large-scale (e.g., continental) CML-based rainfall estimation

    Combining commercial microwave link and rain gauge observations to estimate countrywide precipitation: a stochastic reconstruction and pattern analysis approach

    Get PDF
    Accurate spatiotemporal precipitation quantification is a crucial prerequisite for hydrological analyses. The optimal reconstruction of the spatial distribution, that is, the rainfall patterns, is particularly challenging. In this study, we reconstructed spatial rainfall on a countrywide scale for Germany by combining commercial microwave link and rain gauge observations for a better representation of the variability and spatial structure of rainfall. We further developed and applied the Random-Mixing-Whittaker-Shannon method, enabling the stochastic reconstruction of ensembles of spatial fields via linear combinations of unconditional random fields. The pattern of rainfall objects is evaluated by three performance characteristics, that is, ensemble Structure-, Amplitude-, and Location-error. Precipitation estimates obtained are in good agreement with the gauge-adjusted weather radar product RADOLAN-RW of the German Weather Service (DWD) which was used as a reference. Compared to reconstructions by Ordinary Kriging, Random Mixing showed clear advantages in the pattern representation via a five times smaller median structure error

    Combining Commercial Microwave Link and Rain Gauge Observations to Estimate Countrywide Precipitation: A Stochastic Reconstruction and Pattern Analysis Approach

    Get PDF
    Accurate spatiotemporal precipitation quantification is a crucial prerequisite for hydrological analyses. The optimal reconstruction of the spatial distribution, that is, the rainfall patterns, is particularly challenging. In this study, we reconstructed spatial rainfall on a countrywide scale for Germany by combining commercial microwave link and rain gauge observations for a better representation of the variability and spatial structure of rainfall. We further developed and applied the Random-Mixing-Whittaker-Shannon method, enabling the stochastic reconstruction of ensembles of spatial fields via linear combinations of unconditional random fields. The pattern of rainfall objects is evaluated by three performance characteristics, that is, ensemble Structure-, Amplitude-, and Location-error. Precipitation estimates obtained are in good agreement with the gauge-adjusted weather radar product RADOLAN-RW of the German Weather Service (DWD) which was used as a reference. Compared to reconstructions by Ordinary Kriging, Random Mixing showed clear advantages in the pattern representation via a five times smaller median structure error

    Regenmessung im Mobilfunknetz – Opportunistische Erfassung meteorologischer Größen

    Get PDF
    Das möglichst exakte Erfassen des Niederschlags ist ein grundlegender Bestandteil der Klima‐ und Umweltforschung sowie für verschiedene Anwendungen, beispielsweise in der Landwirtschaft. Eine neue Art der Niederschlagsmessung ermöglicht das Mobilfunknetz in Deutschland mittels Richtfunkstrecken (Commercial Microwave Link, CML). Der große Vorteil dieser Methode liegt in der potenziell weltweit nutzbaren Infrastruktur. Die Qualität der Niederschlagserfassung mit etwa 4000 CML in Deutschland weist eine hohe Übereinstimmung mit dem offiziellen Messnetz des Deutschen Wetterdienstes auf
    corecore